Elements in the Goldschmidt (geochemical) classification that tend to remain on the surface or atmosphere including HydrogenLightest and most common element in the universe (~92% by atoms; ~75% by mass). Hydrogen's isotopes are: • H (99.9885 %)
• H (0.0115 %), also called deuterium.
• H, also called Tritium, is a radioactive (t½ = 12.32 y) by-product of atmospheric thermonuclear tests in Earth's hydrosphere and atmosphere.
(H), CarbonElement commonly found in meteorites, it occurs in several structural forms (polymorphs). All polymorphs are shown to the left with * indicating that it been found in meteorites and impact structures: a. diamond*; b. graphite*; c. lonsdalite*; d. buckminsterfullerene* (C60); e. C540; f. C70; g. amorphous carbon; h. carbon nanotube*. (C), NitrogenPrincipal constituent of the Earth’s atmosphere (78.08 vol. % at ground level). Nitrogen is the fifth most abundant element in the universe by atom abundance. Nitrogen comprises only 3.5 vol. % of the atmosphere of Venus and 2.7 vol. % of Mars’s atmosphere. Nitrogen has two isotopes: N (99.632 %) and N (N), and noble gasesElement occurring in the right-most column of the periodic table; also called "inert" gases. In these gases, the outer electron shell is completely filled, making them very unreactive., namely HeliumHelium (He) Second lightest and second most abundant element (after Hydrogen) in the universe. The most abundant isotope is He (99.9998%), He is very rare. Helium comprises ~8% of the atoms (25% of the mass) of all directly observed matter in the universe. Helium is produced by hydrogen burning inside (He), Neon (Ne), ArgonNoble gas represented by the atomic symbol Ar, that has Z = 18, and an atomic weight of 39.948. It is colorless, odorless, and very inert gas, comprising ~1 % of the Earth's atmosphere. (Ar), Krypton (Kr), Xenon (Xe), and Radon (Rn). These elements can be found in their elemental form or as molecules such as carbon dioxide and water. The notable exception to the list of atmophile elements is OxygenElement that makes up 20.95 vol. % of the Earth's atmosphere at ground level, 89 wt. % of seawater and 46.6 wt. % (94 vol. %) of Earth's crust. It appears to be the third most abundant element in the universe (after H and He), but has an abundance only (O). Since Oxygen is mainly present in the Earth’s crustOutermost layer of a differentiated planet, asteroid or moon, usually consisting of silicate rock and extending no more than 10s of km from the surface. The term is also applied to icy bodies, in which case it is composed of ices, frozen gases, and accumulated meteoritic material. On Earth, the as oxide and silicateThe most abundant group of minerals in Earth's crust, the structure of silicates are dominated by the silica tetrahedron, SiO44-, with metal ions occurring between tetrahedra). The mesodesmic bonds of the silicon tetrahedron allow extensive polymerization and silicates are classified according to the amount of linking that occurs between the minerals, it is commonly considered a lithophile elementElement that tends to be concentrated in the silicate phase, e.g., B, O, halogens, alkali earths, alkali metals, Al, Si, Sc, Ti, V, Cr, Mn, Y, Zr, Nb, REE, Hf, Ta, W, Th, and U.. (Source: Atmophile Elements by Daniele L. Pinti 2017)
Goldschmidt classification:
- Lithophile (rock-loving)
- Siderophile (iron/metal-loving)
- Chalcophile (ore/sulfide-loving )
- Atmophile (gas-loving)