Enstatite AchondriteUsed in past as synonym for Aubrites. Present definition from the Meteoritical Bulletin states that this rare class is an "enstatite-rich  achondrite  that has not yet been classified into a group"., ungroupedModifying term used to describe meteorites that are mineralogically and/or chemically unique and defy classification into the group or sub-group they most closely resemble. Some examples include Ungrouped Achondrite (achondrite-ung), Ungrouped Chondrite (chondrite-ung), Ungrouped Iron (iron-ung), and Ungrouped Carbonaceous (C-ung).
mouseover for alternate view angle
20° 43.04′ N., 32° 30.58′ E. In 2008, October 6 at 5:46 A.M., asteroid 2008 TC3 fell to Earth in northern Sudan. See the Almahata Sitta webpage for the complete story of the discovery of this meteoriteWork in progress. A solid natural object reaching a planet’s surface from interplanetary space. Solid portion of a meteoroid that survives its fall to Earth, or some other body. Meteorites are classified as stony meteorites, iron meteorites, and stony-iron meteorites. These groups are further divided according to their mineralogy and, results of the consortium analyses, and new models for the petrogenetic history of the ureilite parent bodyThe body from which a meteorite or meteoroid was derived prior to its ejection. Some parent bodies were destroyed early in the formation of our Solar System, while others like the asteroid 4-Vesta and Mars are still observable today.. The 2008 TC3 meteorite was sent to NASA’s Johnson Space Center in Houston (Zolensky) and Carnegie Institution of Washington (Steele) for analysis and classification, and Alamahta Sitta was determined to be a polymict ureilite fragmental brecciaWork in Progress ... A rock that is a mechanical mixture of different minerals and/or rock fragments (clasts). A breccia may also be distinguished by the origin of its clasts: (monomict breccia: monogenetic or monolithologic, and polymict breccia: polygenetic or polylithologic). The proportions of these fragments within the unbrecciated material composed of three main ureilite lithologies, along with a wide range of xenolithic clasts representing many different chondritic and achondritic lithologies in an assemblage similar to the polymict brecciaGeneral term for all breccias that are neither monomict nor dimict. Modified from image source: http://www.saharamet.com/meteorite/gallery/HED/index.html. Kaidun (Bischoff et al., 2010). Results of the analyses indicate that all of the clasts came from the Almahata Sitta fallMeteorite seen to fall. Such meteorites are usually collected soon after falling and are not affected by terrestrial weathering (Weathering = 0). Beginning in 2014 (date needs confirmation), the NomComm adopted the use of the terms "probable fall" and "confirmed fall" to provide better insight into the meteorite's history. If; e.g., detection of short-lived cosmogenic nuclides, very low weathering grade (W0–W0/1), multiple lithologies among fragments delimiting a strewn fieldArea on the surface containing meteorites and fragments from a single fall. Also applied to the area covered by tektites, which are produced by large meteorite impacts. Strewnfields are often oval-shaped with the largest specimens found at one end. Given that the largest specimens go the greatest distance, a meteoroid's, a high number of rare E-chondriteType of meteorite high in the mineral enstatite and also referred to as E-chondrites. Although they contain substantial amounts of Fe, it is in the form of Ni-Fe metal or sulfide rather than as oxides in silicates. Their highly reduced nature indicates that they formed in an area of the rock types found together, diffusionMovement of particles from higher chemical potential to lower chemical potential (chemical potential can in most cases of diffusion be represented by a change in concentration). Diffusion, the spontaneous spreading of matter (particles), heat, or momentum, is one type of transport phenomena. Because diffusion is thermally activated, coefficients for diffusion of PAHs among clasts [Sabbah et al., 2010], and the finding of new and unique meteorite fragments within a small area. The heterogeneous composition of Almahata Sitta could reflect an assemblage derived from a catastrophic collision(s) between ureilte and chondriteChondrites are the most common meteorites accounting for ~84% of falls. Chondrites are comprised mostly of Fe- and Mg-bearing silicate minerals (found in both chondrules and fine grained matrix), reduced Fe/Ni metal (found in various states like large blebs, small grains and/or even chondrule rims), and various refractory inclusions (such objects (Kohout et al., 2010). Alternatively, it is considered likely that these diverse clasts could have become gravitationally bound within a common debris disk composed of a disrupted ureilite asteroid, and that this disk then re-accreted into one or more smaller second-generation asteroids. This second-generation asteroid later became lightly sintered together through subsequent low-energy impacts, resulting in a bulk porosityThe volume percentage of a rock that consists of void space. Vesicular porosity is a type of porosity resulting from the presence of vesicles, or gas bubbles, in igneous rock such as the pumice presented here. Vesicular porosity is very rare in meteorites and is often associated with slag, one of ~50%. The highly porous ureilite material recovered from the Almahata Sitta fall, as represented by the recovered specimen MS-168, is consistent with the hypothesized lightly-sintered matrixFine grained primary and silicate-rich material in chondrites that surrounds chondrules, refractory inclusions (like CAIs), breccia clasts and other constituents. of the second-generation asteroid 2008 TC3. Among the wide variety of xenolithic clasts recovered from the Alamahta Sitta polymict ureilite fall is the 177.1 g inclusionFragment of foreign (xeno-) material enclosed within the primary matrix of a rock or meteorite. MS-MU-036. This inclusion was analyzed at the Institut für Planetologie in Münster, Germany and classified as a unique metal-rich enstatiteA mineral that is composed of Mg-rich pyroxene, MgSiO3. It is the magnesium endmember of the pyroxene silicate mineral series - enstatite (MgSiO3) to ferrosilite (FeSiO3). achondriteAn achondrite is a type of stony meteorite whose precursor was of chondritic origin and experienced metamorphic and igneous processes. They have a planetary or differentiated asteroidal origin where the chondritic parent body reached a sufficient size that through heating due to radioactive decay of Al (aluminum isotope) and gravitational similar to the 14.0 g inclusion MS-MU-019 (Bischoff et al., 2016, #6319). It is composed of three different enstatite populations (~En98.5Wo1.3, ~En96.5Wo3.2, and ~En60Wo40) within a matrix of Si-bearing metalElement that readily forms cations and has metallic bonds; sometimes said to be similar to a cation in a cloud of electrons. The metals are one of the three groups of elements as distinguished by their ionization and bonding properties, along with the metalloids and nonmetals. A diagonal line drawn, along with minor sulfides including oldhamiteMn-Ca sulfide, (Mn,Ca)S, is a pale to dark brown accessory mineral found in minor amounts in highly reduced meteorites such as many enstatite chondrites, and some aubrites and enstatite achondrites. Oldhamite in enstatite chondrites likely formed by solar nebular gas condensation. CaS Oldhamite was also found in the most fresh, alabanditeMagnesium sulfide found in aubrites and EL chondrites. Its formula is MnS., and daubréelite. Inclusion MS-MU-019 is similar in that it is composed of two different enstatite populations (~En98.5Wo1.3, and ~En96.5Wo3.2) within a Si-bearing metal matrix (Bischoff et al., 2015, #5092). In addition, it is considered by Hoffmann et al. (2016, #1874) that MS-MU-019 might have similarities to the metal-rich enstatite achondrites NWA 8173 (photo courtesy of Gary Fujihara) and NWA 10271. It is noteworthy that these two enstatite achondrite inclusions have also been compared to Itqiy (Bischoff et al., 2016), which itself has been compared to a number of other anomalous metal-rich, enstatite achondrite-related meteorites. In particular, metal in Mount Egerton and in the anomalous iron meteoriteIron meteorites consist mostly of metallic iron alloyed with typically between ~5 to ~30 wt% nickel. The main metal phases are kamacite α-(Fe, Ni) and taenite y-(Fe, Ni). Based on their group classification, they may also contain a small weight percentage of one or more of the following minerals: • Horse Creek (as well as the anomalous irons LEW 85369, LEW 88055, and LEW 88631) has been described as being compositionally similar (i.e., having complementary HSE patterns in metal) to metal in the anomalous enstatite achondrite NWA 2526, which like Itqiy is a partial melt residue after ~20% partial melt extraction (Keil and Bischoff, 2008; Humayun et al., 2009; M. Humayun, 2010). These meteorites might have a common origin on an enstatite parent body unique from the Shallowater, EH, EL, and main-group aubriteAubrites are named for the Aubres meteorite that fell in 1836 near Nyons, France. They are an evolved achondrite that is Ca-poor and composed mainly of enstatite (En100) and diopside (En50Wo50) with minor amounts of olivine (Fa0) and traces of plagioclase (An2-8). They contain large white crystals of enstatite as parent bodies (Keil and Bischoff, 2008). Continued studies of these meteorites could help resolve potential genetic links among them. Exclusive of the primary ureilite components, there was a broad diversity of lithologic types present in 2008 TC3, constituting <30% of all material recovered. However, with the vast bulk of 2008 TC3 thought to have been lost as fine dust (≥99.9% of the estimated 42–83 ton pre-atmospheric mass), the bulk asteroid was likely composed of fine-grained, highly porous, and weakly consolidated ureilitic matrix material, consistent with the reflectance spectra obtained for the asteroid (Goodrich et al., 2015). Examples of some of the diverse samples that have been recovered are listed below (Bischoff et al., 2010, 2015, 2016, 2018; Horstmann and Bischoff, 2010, 2014; Hoffmann et al., 2016):
- ultrafine- to fine-grained ureilites (representing numerous lithologies with varying olivineGroup of silicate minerals, (Mg,Fe)2SiO4, with the compositional endpoints of forsterite (Mg2SiO4) and fayalite (Fe2SiO4). Olivine is commonly found in all chondrites within both the matrix and chondrules, achondrites including most primitive achondrites and some evolved achondrites, in pallasites as large yellow-green crystals (brown when terrestrialized), in the silicate portion compositions): MS-185 (ultrafine-grained), MS-MU-001, -018 (high shock, metal–sulfide-rich), -025 (high shock), -027 (high shock), -030 (high shock, metal–sulfide-rich), -032 (high shock, metal–sulfide-rich), -033 (high shock, metal–sulfide-rich), -040 (high shock), -045 (high shock)
- coarse-grained ureilites (representing numerous lithologies with varying olivine compositions: MS-MU-005, -006, -008, -010, -014 (very coarse), -016, -017, -020, -022, -034, -037, -038
- variable grain-sized ureilite breccias: MS-25, -205, -190; MS-MU-004, -021, -028, -042
- highly porous ureilitic (matrix) material: MS-168
- enstatite chondritesChondrites are the most common meteorites accounting for ~84% of falls. Chondrites are comprised mostly of Fe- and Mg-bearing silicate minerals (found in both chondrules and fine grained matrix), reduced Fe/Ni metal (found in various states like large blebs, small grains and/or even chondrule rims), and various refractory inclusions (such (36 representing numerous different enstatite chondrites): EH3 (MS-14), EH4/5 (MS-192, MS-MU-009), EH5 (MS-MU-041, -044), EL3 (MS-1, -17, -177, MS-MU-002, -023, -031), EL3/4 + melt (MS-17, MS-MU-039 [+ melt]), EL3–5 (MS-179), EL4 (MS-MU-029), EL4/5 (MS-192, MS-MU-009), EL5 (MS-196), EL5/6 (MS-7), EL6 (MS-150, MS-MU-007, -015, -024, -026), EL breccias (MS-MU-003), and both EL and EH (MS-155) shock-darkened, impact-melt rocks or impact-melt breccias
- ordinary chondrites: H4 (MS-MU-043), H5 (AhS 25, MS-151 [shock-darkened]), H5/6 (MS-11, with compositional discordance), L4 (AhS A100), LL4/5 (MS-197), H5-an (MS-MU-013)
- unique chondrite: MS-CH, type 3.8 [± 0.1], has petrographic and isotopic affinities to R-chondrites, but is mineralogically anomalous
- Bencubbin-like carbonaceous chondriteCarbonaceous chondrites represent the most primitive rock samples of our solar system. This rare (less than 5% of all meteorite falls) class of meteorites are a time capsule from the earliest days in the formation of our solar system. They are divided into the following compositional groups that, other than: MS-181, a 58.6 g chondrule-like clastA mineral or rock fragment embedded in another rock. containing metal globules and silicates in a 60:40 ratio, having an O-isotopic composition consistent with bencubbinites
- C2 carbonaceous chondrite: AhS 202 (photo; Fioretti et al., 2017, #1846)
- C1 carbonaceous chondrite: AhS 91/91A and 671 (photo; Goodrich et al., 2018, #1321)
- niningerite-bearing, fine-grained ureilitic fragment (linking E chondrites): MS-20
- sulfide-metal assemblage in a fine-grained ureilitic fragment: MS-158, -166
- ungrouped enstatite- and metal-rich achondrite fragments: MS-MU-019 (characteristics similar to NWA 8173/10271); MS-MU-036 (similar to MS-MU-019 and Itqiy [Bischoff et al., 2016]); AhS 38 (similar to MS-MU-019 and Itqiy but contains olivine [Goodrich et al., 2018]); AhS 60 (possible E IMR analogous to Portales Valley [Goodrich et al., 2018])
- the first known plagioclase-bearing olivine–augiteHigh-Ca clinopyroxene, (Ca,Mg,Fe)SiO3, that occurs in many igneous rocks, particularly those of basaltic composition. In order to be considered augite, the clinopyroxene must contain 20 to 45 mol % of calcium (Wo20 - 45). An important and unique Martian meteorite is NWA 8159, that has been classified as an augite basalt. ureilite lithology: MS-MU-012
- trachyandesitic clasts: 1) MS-MU-011 (view 1), MS-MU-011 (view 2), sample ALM-A; plagioclase-enriched (~70 vol%) with pockets of gemmy olivine (photo courtesy of Stephan Decker), likely sampling the UPB crustOutermost layer of a differentiated planet, asteroid or moon, usually consisting of silicate rock and extending no more than 10s of km from the surface. The term is also applied to icy bodies, in which case it is composed of ices, frozen gases, and accumulated meteoritic material. On Earth, the (or possibly an alkali- and water-rich localized melt pocket); calculated Ar–Ar age of ~4.556 b.y. and Pb–Pb age of ~4.562 b.y. (Bischoff et al., 2013, 2014; Delaney et al., 2015; Turrin et al., 2015; Amelin et al., 2015); 2) MS-MU-035; anorthoclase and/or plagioclase-enriched (~65 vol%) (Bischoff et al., 2016)
Thanks to Stephan Decker’s Meteorite Shop and Museum for providing specimens of this special meteorite and many of its xenolithic inclusions to the scientific and collector communities. The photo of MS-MU-036 shown above is a 0.24 g partial slice. The photo below highlights the high metal content in this enstatite achondrite, exhibiting a textural similarity to the EH7-an Itqiy (compare to Itqiy photo here).