The primary cosmochemical classification of the elements is based on their volatility within the solar nebulaThe primitive gas and dust cloud around the Sun from which planetary materials formed.. Each element’s equilibriumTerm used to describe physical or chemical stasis. Physical equilibrium may be divided into two types: static and dynamic. Static equilibrium occurs when the components of forces and torques acting in one direction are balanced by components of forces and torques acting in the opposite direction. A system in static (50%) condensation temperatures (TC,50 (K) at 10 -4 barUnit of pressure equal to 100 kPa.) is used to divide the elements into those that are refractory (having equilibrium condensation temperatures higher than the most abundant rock-forming elements such as magnesium, silicon and iron), moderately volatileSubstances which have a tendency to enter the gas phase relatively easily (by evaporation, addition of heat, etc.). (having TC,50 lower than refractory elementsUsing research by Wood (2019), any of the elements with a relatively high condensation temperature of 1291 K < TC,50 < 1806 K in the solar nebula. They are the first elements to condense out of a cooling gas. Refractory elements are the main building blocks of rocky planets, dwarf but higher than that of FeS), and volatile (having TC,50Â less than FeS). Some sources also refer to the super refractory elements that include Hf, Zr, W, Re and Os.
The TC,50 used below and the table further down was created in large part using the information from the 2019 paper written by B. Wood, et al titled “The condensation temperatures of the elements: A reappraisal“.
- 1720 K (Hafnium TC,50) <Â TC,50 Super-Refractory < 1806 KÂ (Osmium TC,50)
- 1291 KÂ (Chromium TC,50)Â < TC,50 Refractory < 1720 K
- 672 K (Sulfur TC,50)Â < TC,50 Moderately Volatile < 1291 K
- TC,50 Volatile < 672 K
Note that the en.wikipedia.org entry uses references that are no longer up to date.
Condensation Temperatures of the Elements (Volatile & Refractory)
Atomic Number | Element Symbol | T50 (K) Wood (2019) | Phase | T50 (K) Lodders (2003) | Phase | T50 (K) Wasson (1985) | Category 1** | Category 2 |
---|---|---|---|---|---|---|---|---|
3 | Li | 1148 | En | 1142 | Fo + En | 1225 | Moderately Volatile | |
4 | Be | 1551 | Mll | 1452 | Mll | Moderately Refractory | Refractory Lithophile | |
5 | B | 740 | Pl | 908 | Fsp | Volatile | ||
6 | C | 40 | CH4·7H2O + CH4 ice | Highly Volatile | ||||
7 | N | 123 | NH3·H2O | Highly Volatile | ||||
8 | O | 183 | Rock + Water ice | 180 | Rock + Water ice | Highly Volatile | ||
9 | F | 674 | F-Ap | 734 | F-Ap | 736 | ||
10 | Ne | 9.1 | Ne ice | |||||
11 | Na | 1035 | Pl | 958 | Fsp | 970 | Volatile | |
12 | Mg | 1343 | Fo + Cpx | 1336 | Fo | 1340 | Moderately Refractory | |
13 | Al | 1652 | Crn | 1653 | Hbn | 1650 | Refractory Lithophile | |
14 | Si | 1314 | Fo + Cpx | 1310 | Fo + En | 1311 | Moderately Refractory | |
15 | P | 1287 | Scb | 1229 | Scb | 1151 | Moderately Volatile | |
16 | S | 672 | Tro | 664 | Tro | 648 | Volatile | |
17 | Cl | 472 | Cl-Ap | 948 | Sdl | 863 | ||
18 | Ar | 47 | Ar·6H2O | Highly Volatile | ||||
19 | K | 993 | Pl | 1006 | Fsp | 1000 | Volatile | |
20 | Ca | 1535 | Mll | 1517 | Hbn + Mll | 1518 | Refractory Lithophile | |
21 | Sc | 1541 | Prv + Mll | 1659 | Hbn | 1644 | Refractory Lithophile | |
22 | Ti | 1565 | Prv | 1582 | Prv | 1549 | Refractory Lithophile | |
23 | V | 1370 | Fe alloy + Prv | 1429 | Prv | 1450 | Moderately Refractory | |
24 | Cr | 1291 | Fe alloy | 1296 | Fe alloy | 1277 | Moderately Refractory | |
25 | Mn | 1123 | Fo + En | 1158 | Fo + En | 1190 | Moderately Volatile | |
26 | Fe | 1338 | Fe alloy | 1334 | Fe alloy | 1336 | Moderately Refractory | |
27 | Co | 1354 | Fe alloy | 1352 | Fe alloy | 1351 | Moderately Refractory | |
28 | Ni | 1363 | Fe alloy | 1353 | Fe alloy | 1354 | Moderately Refractory | |
29 | Cu | 1034 | Fe alloy | 1037 | Fe alloy | 1037 | Moderately Volatile | |
30 | Zn | 704 | Tro | 726 | Fo + En | 660 | ||
31 | Ga | 1010 | Fe alloy | 968 | Fe alloy + Fsp | 918 | Volatile | |
32 | Ge | 830 | Fe alloy | 883 | Fe alloy | 825 | ||
33 | As | 1235 | Fe alloy | 1065 | Fe alloy | 1157 | ||
34 | Se | 701 | Tro | 697 | Tro | 684 | Volatile | |
35 | Br | 420 | Syl | 546 | Cl-Ap | 690 | ||
36 | Kr | 52 | Kr·6H2O | Highly Volatile | ||||
37 | Rb | 752 | Sa | 800 | Fsp | 1080 | Volatile | |
38 | Sr | 1548 | Prv | 1464 | Ca-titanate | Moderately Volatile | Refractory Lithophile | |
39 | Y | 1551 | Mll + Prv | 1659 | Hbn | 1592 | Refractory Lithophile | |
40 | Zr | 1722 | ZrO2 | 1741 | ZrO2 | 1780 | Super-Refractory | Refractory Lithophile |
41 | Nb | 1561 | Prv 1 | 1559 | Ca-titanate | 1550 | Moderately Refractory | Refractory Lithophile |
42 | Mo | 1520 | Mo metal | 1590 | Refractory metal alloy | 1608 | Refractory Siderophile | |
44 | Ru | 1533 | Os-Ir-Ru alloy | 1551 | Refractory metal alloy | 1573 | ||
45 | Rh | 1370 | Fe alloy | 1392 | Refractory metal alloy | 1391 | ||
46 | Pd | 1330 | Fe alloy | 1324 | Fe alloy | 1334 | Moderately Refractory | |
47 | Ag | 699 | Tro | 996 | Fe alloy | 952 | Volatile | |
48 | Cd | 502 | Tro | 652 | En + Tro | 430 | ||
49 | In | 492 | Tro | 536 | Tro | 456 | Very Volatile | |
50 | Sn | 604 | Fe alloy | 704 | Fe alloy | 720 | Volatile | |
51 | Sb | 890 | Fe alloy | 979 | Fe alloy | 912 | ||
52 | Te | 665 | Tro | 709 | Fe alloy | 680 | ||
53 | I | 390 | KI | 535 | Cl-Ap | |||
54 | Xe | 68 | Xe·6H2O | |||||
55 | Cs | 593 | Sa | 799 | Fsp | Volatile | ||
56 | Ba | 1423 | Prv | 1455 | Ca-titanate | Moderately Volatile | Refractory Lithophile | |
57 | La | 1615 | Hbn | 1578 | Hbn + Ca-titanate | 1520 | Refractory Lithophile | |
58 | Ce | 1454 | Mll+ Prv | 1478 | Hbn + Ca-titanate | 1500 | Moderately Refractory | Refractory Lithophile |
59 | Pr | 1550 | Hbn + Prv | 1582 | Hbn + Ca-titanate | 1532 | Refractory Lithophile | |
60 | Nd | 1630 | Hbn | 1602 | Hbn | 1510 | Refractory Lithophile | |
62 | Sm | 1545 | Hbn + Prv | 1590 | Hbn + Ca-titanate | 1515 | Refractory Lithophile | |
63 | Eu | 1491 | Mll + Prv | 1356 | Hbn + Ca-titanate + Fsp | 1450 | Moderately Refractory | Refractory Lithophile |
64 | Gd | 1630 | Hbn | 1659 | Hbn | 1545 | Refractory Lithophile | |
65 | Tb | 1630 | Hbn | 1659 | Hbn | 1560 | Refractory Lithophile | |
65 | Td | Refractory Lithophile | ||||||
66 | Dy | 1630 | Hbn | 1659 | Hbn | 1571 | Refractory Lithophile | |
67 | Ho | 1630 | Hbn | 1659 | Hbn | 1568 | Refractory Lithophile | |
68 | Er | 1630 | Hbn | 1659 | Hbn | 1590 | Refractory Lithophile | |
69 | Tm | 1630 | Hbn | 1659 | Hbn | 1545 | Refractory Lithophile | |
70 | Yb | 1528 | Mll + Prv | 1487 | Hbn + Ca-titanate | 1455 | Moderately Refractory | Refractory Lithophile |
71 | Lu | 1630 | Hbn | 1659 | Hbn | 1597 | Refractory Lithophile | |
72 | Hf | 1720 | HfO2 | 1684 | HfO2 | 1652 | Super-Refractory | Refractory Lithophile |
73 | Ta | 1546 | Prv | 1573 | Hbn + Ca-titanate | 1550 | Refractory Lithophile | |
74 | W | 1736 | W-Re | 1789 | Refractory metal alloy | 1802 | Super-Refractory | Refractory Siderophile |
75 | Re | 1736 | W-Re | 1821 | Refractory metal alloy | 1819 | Super-Refractory | Refractory Siderophile |
76 | Os | 1806 | Os metal | 1812 | Refractory metal alloy | 1804 | Super-Refractory | Refractory Siderophile |
77 | Ir | 1566 | Os-Ir | 1603 | Refractory metal alloy | 1610 | ||
78 | Pt | 1370 | Fe alloy | 1408 | Refractory metal alloy | 1411 | Moderately Refractory | |
79 | Au | 967 | Fe alloy | 1060 | Fe alloy | 1225 | Moderately Volatile | |
80 | Hg | 240 | Tro | 252 | Tro | |||
81 | Tl | 365 | Tl2S, Tl | 532 | Tro | 428 | Very Volatile | |
82 | Pb | 495 | PbS | 727 | Fe alloy | 496 | Very Volatile | |
83 | Bi | 480 | Bi metal | 746 | Fe alloy | 451 | Very Volatile | |
90 | Th | 1630 | Hbn | 1659 | Hbn | 1545 | Refractory Lithophile | |
92 | U | 1609 | Hbn | 1610 | Hbn | 1420 | Refractory Lithophile |
Notes:
- En = enstatiteA mineral that is composed of Mg-rich pyroxene, MgSiO3. It is the magnesium endmember of the pyroxene silicate mineral series - enstatite (MgSiO3) to ferrosilite (FeSiO3).; Fo = forsteritePure* magnesium end-member (Mg2SiO4) of the olivine solid solution series and an important mineral in meteorites. When magnesium (Mg) is completely substituted by iron, it yields the the pure Fe-olivine end member, fayalite (Fe2SiO4). The various Fe and Mg substitutions between these two end-members are described based on their forsteritic (Fo); Cpx = clinopyroxene; Mll = meliliteGroup of minerals found in the CAIs of meteorites such as CV chondrites. Melilite consists almost exclusively of the binary solid solution gehlenite (Ca2Al2SiO7) – åkermanite (Ca2MgSi2O7). The melilite in CAIs is closer to gehlenite in composition. The first-formed (highest-temperature) melilite crystallizing from a melt is relatively aluminum-rich and becomes progressively; Pl = plagioclaseAlso referred to as the plagioclase feldspar series. Plagioclase is a common rock-forming series of feldspar minerals containing a continuous solid solution of calcium and sodium: (Na1-x,Cax)(Alx+1,Si1-x)Si2O8 where x = 0 to 1. The Ca-rich end-member is called anorthite (pure anorthite has formula: CaAl2Si2O8) and the Na-rich end-member is albite; Fsp = feldsparAn alumino-silicate mineral containing a solid solution of calcium, sodium and potassium. Over half the Earth’s crust is composed of feldspars and due to their abundance, feldspars are used in the classification of igneous rocks. A more complete explanation can be found on the feldspar group page.; Ap = apatite; Crn = corundumCrystalline form of aluminium oxide, Al2O3, found in Ca-Al-rich inclusions (CAIs). Corundum-bearing CAI are a rare class of high-temperature condensates from the inner regions of the protoplanetary disk.; Hbn = hiboniteRefractory mineral, Ca-aluminate (CaAl12O19) that occurs in terrestrial metamorphic rocks and in CAIs of many chondrites. Meteoritic hibonite tends to be blue as seen in the meteorite Isheyevo (Ch/CB). Hibonite is one of the most refractory minerals found in primitive meteorites.; Scb = schreibersiteNi-Fe phosphide mineral, (Fe,Ni)3P, yellowish in color and predominantly found in iron and stony-iron meteorites. Schreibersite can also be found in a variety of other meteorites including some acapulcoites, aubrites, enstatite chondrites and achondrites, lunars, ureilites, winonaites and a smattering of other meteorite types like CM, CO and CB. Schreibersite; Tro = troiliteBrass colored non-magnetic mineral of iron sulfide, FeS, found in a variety of meteorites.; Sdl = sodalite; Prv = perovskiteTerm applied to ABO3 high-pressure minerals with a perovskite structure (general formula ABX3) where "A" is a metal that forms large cations such as Mg, Fe or Ca, "B" is another metal that forms smaller cations such as Si (called silicate perovskite), Ti and to a lesser degree Al, and; Syl = sylvite; Sa = sanidine
- 10Â -5 bar
- Approximate temperature
- ** Based on Wasson except for C, Ar, Kr, N, O that are based on Lodders
Other Sources:
- https://par.nsf.gov/servlets/purl/10036398
- Lauretta, McSween “Meteorites and the Early Solar System”, p. 296 (Volatile Evolution and Loss by Andrew M. Davis)
- https://iopscience.iop.org/article/10.1086/375492/fulltext/57586.text.html, Solar SystemThe Sun and set of objects orbiting around it including planets and their moons and rings, asteroids, comets, and meteoroids. Abundances and Condensation Temperatures of the Elements, Katharina Lodders