Posted on Leave a comment

Ibitira

Eucrite-like basaltic achondrite, ungrouped
(possible impact melt rock)
standby for ibitira photo
Fell June 30, 1957
20° S., 45° W. approx. A fall occurred at 5:15 P.M. and one 2.5 kg stone was recovered in the village of Ibitira, near Martinho Campos, in Minas Gerais, Brazil. This is a unique, unbrecciated, vesicular basaltic achondrite composed mainly of pyroxene in the form of pigeonite with exsolved augite, along with plagioclase and tridymite. Minor ilmenite, chromite, FeNi-metal, and troilite are present. Ibitira has been historically grouped with the Stannern trend eucrites according to compositional similarities, such as its plot on a TiO vs. FeO/MgO diagram and its major and trace element ratios. However, a recent in-depth petrologic analysis of Ibitira was conducted by D. Mittlefehldt (2005), the results of which have led to the proposal that Ibitira was formed on a parent body distinct from that of the HED suite basaltic achondrites (widely considered to be 4 Vesta).

Diagnostic data for Ibitira (Mittlefehldt, 2005; Lentz et al., 2007), which show significant deviations from representative eucrite data, includes higher Fe/Mn (34–36 vs. 30 ±2) and lower Fe/Mg ratios in low-Ca pyroxene, aberrant O-isotope ratios, high Ti/Hf ratios, a volatile-rich composition, and a low alkali element content with a correspondingly high Ca content in plagioclase. While each of these factors taken individually might not definitively resolve Ibitira from the established eucrites or other known basaltic meteorites (e.g., O-isotope ratios for Ibitira are the same as those for angrites), when considered together they are diagnostic for the formation of Ibitira on a unique parent asteroid. As deduced by Scott et al. (2008), the high degree to which impact gardening has occurred on Vesta would suggest that Ibitira-like lithologies should be present in other HED meteorites, which is not the case. The compositional and isotopic similarities that exist among Ibitira, the eucrites, and the angrites suggest that they all likely formed from similar CV chondrite-like source material (similarly enriched in a refractory component) in relatively close proximity, but Ibitira and eucrites differentiated under reducing conditions while angrites differentiated under oxidizing conditions (Iizuka et al. (2015). McKibbin and O’Neill (2017) propose that the angrite parent body was originally stratified and heterogeneous with respect to chemical composition and redox state, and that Ibitira could possibly represent a melt from a more reduced region on this planetesimal.

As presented by Sanborn and Yin (2014) [#2018], a Δ17O vs. ε54Cr diagram is one of the best available diagnostic tools for determining genetic (parent body) relationships between meteorites, constrained by the degree to which isotopic homogenization occurred on their respective parent bodies. Moreover, Sanborn et al. (2015) demonstrated that ε54Cr values are not affected by aqueous alteration. Currently, a number of anomalous eucritic meteorites are known, including Ibitira, Pasamonte, NWA 1240, PCA 82502/91007, Emmaville, Bunburra Rockhole, A-881394, EET 92023, each of which are resolved from typical eucrites and the HED parent body both isotopically and compositionally; notably, the latter three anomalous eucritic meteorites have close O-isotope values and might be related (Barrett et al., 2017, O-isotopic diagram 1; Mittlefehldt et al., 2018, O-isotopic diagram 2).

Another useful tool to help resolve potential genetic relationships among meteorites is the Fe/Mn ratio. While Fe and Mn do experience nebular fractionations they are not readily fractionated during parent body igneous processing, and therefore different Fe/Mn values are inherent in different parent objects. Mittlefehldt et al. (2017) utilized a number of eucrites and anomalous eucrite meteorites, including Ibitira, A-881394, EET 92023, and Emmaville, to compare the Fe/Mn and Fe/Mg ratios in low-Ca pyroxenes. Contrary to the O-isotopic results, these four meteorites plot in separate locations on an Fe/Mn vs. Fe/Mg coupled diagram, which suggests that they derive from separate parent bodies (see diagram below). Moreover, although Bunburra Rockhole and A-881394 have the same oxygen and chromium isotope compositions, new in-depth analyses of Bunburra Rockhole conducted by Benedix et al. (2017, and references therein) have revealed that these two meteorites have very different textures and mineral chemistries; e.g., Bunburra Rockhole has plagioclase with An8790, while A-881394 has plagioclase with An98. Based on their results, they consider it likely that these two meteorites derive from separate parent bodies. Further details about the anomalous eucrites can be found on the Pasamonte page. standby for fe/mn vs. fe/mg diagram
Diagram adapted from Mittlefehldt et al., 47th LPSC, #1240 (2016) It is known that ureilites, generally considered to originate from a common parent body, have a relatively wide degree of variability in Δ17O, but a relatively narrow degree of variability in ε54Cr. By comparison, Sanborn et al. (2014) inferred that the similar degree of variability that exists among these anomalous eucritic meteorites could likewise reflect a common origin from a single Vesta-like parent body distinct from typical eucrites (see diagram below). Several exceptions to this hypothesis have since been identified including the following: NWA 1240 plots away from the common HED field; PCA 82502/91007 is resolved from the other anomalous eucrites by both O-isotopes and pyroxene Fe/Mn ratio; A-881394 has significantly different oxygen isotopes, Ti/Al and Fe/Mn values, and bulk composition compared to HEDs (Mittlefehldt et al. (2015); and EET 92023 exhibits significant differences in O-isotopes, Cr-isotopes (Sanborn et al., 2016, #2256), and pyroxene composition compared to HEDs and other anomalous achondrites. EET 92023 shares similar O- and Cr-isotopes to A-881394 and Bunburra Rockhole indicating that they might have formed within a common isotopic reservoir. Under the hypothesis that Δ17O values serve equally well as a discriminator compared to ε54Cr values, all of these anomalous meteorites could derive from numerous unique parent bodies distinct from Vesta. standby for pasamonte o-cr diagram
Diagram adapted from Sanborn and Yin, 45th LPSC, #2018 (2014) It is notable that Ibitira has Δ17O and ε54Cr values which are indistinguishable from the angrites (Franchi and Greenwood, 2004) (see diagram below). McKibbin et al. (2016) recognized that compositional similarities also exist between Ibitira and the angrites; e.g., both have relatively high refractory element contents (Ca, Al, and Ti) with depletions in alkali elements (Na and K). In addition, Ibitira has a relatively high heavy-REE content in contrast to the low heavy-REE content in xenocrystic olivine in angrites. Therefore, McKibbin et al. (2016) suggest that Ibitira might be the basaltic material complimentary to the xenocrystic olivine in angrites. However, if Ibitira and the angrites derive from a common parent body the differences that exist in their respective Na/Ca and Fe/Mn ratios (D. W. Mittlefehldt, 2005) requires an explanation. standby for ibitira o-cr diagram
Diagram credit: Wimpenny et al., GCA, vol. 244, p. 487 (2019)
‘Reassessing the origin and chronology of the unique achondrite Asuka 881394:
Implications for distribution of 26Al in the early Solar System’
(https://doi.org/10.1016/j.gca.2018.10.006)
Ibitira is derived from in situ crystallization of residual melts within a magma ocean that was subsequently cooled at depth. Studies of the cooling rate and burial depth indicate that initial cooling down to 550°C proceeded at 0.02°C/yr at a depth approximating 30 m, 90 m, or 550 m, corresponding to a 50%-porous regolith, a compacted regolith, or a solid rock cover, respectively (Miyamoto et al. (2001). Ibitira experienced a very prolonged thermal annealing to a metamorphic grade of 5 (Takeda and Graham, 1991), equilibrating pyroxene and forming augite exsolution lamellae. Its igneous crystallization age based on the Pb–Pb age of pyroxene was determined to be 4.5561 (±0.0023) b.y., which is older than most all eucrites (Iizuka et al., 2013). With the determination of a more precisely calculated 238U/235U value, a slightly older Pb–Pb age of 4.55675 (± 0.00057) b.y. was obtained by Iizuka et al. (2014). This age is considered to represent the time of final equilibration during high-temperature metamorphism, probably soon after igneous crystallization. They suggest this stage of thermal metamorphism was initiated when the Ibitira source lava flow was buried by subsequent flows. Notably, the Pb–Pb age of Ibitira is virtually identical to its Mn–Cr age, calculated to be 4.5574 (± 0.0025) b.y. anchored to the D’Orbigny angrite. A subsequent impact heating event may be recorded by Ar–Ar chronometry ~4.49 b.y. ago, possibly representing the onset of a rapid cooling stage at ~850°C (Iizuka et al., 2014).

The Pb–Pb and Mn–Cr ages of Ibitira are identical to the those of the slowly cooled (sub-volcanic and plutonic) angrites such as LEW 86010, NWA 4801, and Angra dos Reis, measured to be ~4.557 b.y. old (Amelin et al., 2006; Lugmair and Shukolykov, 1998). Ibitira experienced a reheating event to a temperature of ~1100°C when a large impact event excavated this material and formed a crater probably hundreds of kilometers wide. The Ar–Ar age of ~4.4858 b.y. might reflect this reheating event, which also resulted in the formation of a Ca gradient in the augite lamella, the recrystallization of plagioclase, and the formation of tridymite. Of possible significance is the existence of a tight clustering of Ar–Ar ages in common with that of Ibitira for a number of unbrecciated eucrites and cumulate eucrites (Bogard and Garrison, 2003). These similar ages are consistent with a major impact excavation at depth on the eucrite parent body, after which rapid cooling brought about the closure of the K–Ar chronometer. It is posited that this ~4.49 b.y. old event produced smaller daughter asteroids (Vestoids) from which unbrecciated and cumulate eucrites were eventually derived. However, this radiometric age data appears to contradict much of the diagnostic data presented in the paragraphs above and the presumption that Ibitira formed on a parent body separate from that of other eucrites. The CRE age for Ibitira was estimated through Kr-Kr dating by Shukolyukov and Begemann (1996) at 12.5 (±2.0) m.y., which straddles two CRE age clusters determined for eucrites.

A high temperature environment is indicated by the granoblastic texture as well as the extreme Ti-enrichment observed in Ibitira. Rapid cooling (50°C/yr) of a magma enriched in CO, CO2, and/or water (~50–200 ppm) occurred at considerable depth, accompanied by a rapid drop in pressure that promoted the formation of large (up to 0.5 cm diameter) vesicles constituting ~3–7 vol% of the rock (McCoy et al., 2003). The high Ca content of plagioclase indicates that water was present in the magma during vesicle formation, and H may have been a minor component of the vesicle-forming gas (Burbine et al., 2006). The subsequent mineral growth that occurred within these vesicles includes titanian chromite, ilmenite, whitlockite, and metallic iron. Tabular silica grains present in Ibitira, which are only present in eucrites with granoblastic textures, reflect high temperature metamorphic conditions; this is consistent with their proposed crystallization from the residual partial melt (Mayne et al., 2008).

The 485 g highly shocked and brecciated achondrite NWA 2824 shows many similarities to Ibitira, including similar oxygen isotope values (see diagram below), and it is considered that these two meteorites may be related and that Ibitira might be an impact melt rock rather than a basaltic lava (Bunch et al., 2009, #5367). standby for o-cr diagramDiagram credit: Irving et al., 49th LPSC, #2247 (2018) The question was raised whether any of the many eucrite and anomalous eucrite-like meteorites now characterized actually derive from dwarf planet 4Vesta, or instead, represent numerous diverse parent bodies (Irving et al., 2018). The specimen of Ibitira shown above is a 2.4 g partial slice exhibiting abundant vesicles.


Posted on Leave a comment

Stannern

Eucrite
Monomict, noncumulate
(Stannern trend)

standby for stannern photo
Fell May 22, 1808
49° 17′ N., 15° 34′ E.

Following detonations, about 300 stones fell in Jihomoravsky, Czechoslavakia at approximately 6:00 A.M.. Sixty-six of these stones were subsequently recovered, having a combined total weight of ~52 kg, with the largest weighing 6 kg.

Stannern is a moderately equilibrated monomict breccia with a degree of metamorphism consistent with type 4 in the metamorphic sequence of Takeda and Graham (1991). As with the other Stannern Trend eucrites, which are all included in the lower metamorphic types of 1–4, Stannern’s relatively low degree of metamorphism is considered to be indicative of a late lava eruption which was not deeply buried thereafter.

Stannern has a composition that defines a separate trend among eucrites, one that is enriched in incompatible elements and exhibits a high Mg# (defined as molar 100×MgO/[MgO+FeO]). This is reflected in its plot on a TiO vs. FeO/MgO diagram, as well as in its major and trace element ratios. Although the incompatible element abundances for Stannern Trend eucrites are the highest found, they are not linked to the Mg# in the way they are in the Nuevo Laredo Trend eucrites. Instead, the incompatible trace elements have been decoupled from the major elements during in situ crystallization from a residual melt. The composition is analogous to lunar KREEP basalts produced during late-stage fractional magmatism.

An alternate petrogenesis of the Stannern Trend eucrites has been proposed by Barrat et al. (2007). They envisage a region of 10% partial melting at depth within the equilibrated eucritic crust, and the subsequent assimilation of a portion of this crustal partial melt by an ascending magma plume with Main Group composition in a ratio of approximately 15:85, respectively. They demonstrate that this would result in the enrichment of the incompatible trace elements, including REE, similar to that observed in Stannern and other members of this trend, along with the corresponding negative anomalies observed for Eu, Sr, and Be. This model is also consistent with other elemental abundances; the increased W content in Stannern Trend eucrites is consistent with the behavior of W as an incompatible element when it is associated with a metal-free, crustal partial melt. The degree of variation observed among non-cumulate eucrites is commensurate with the degree of crustal melt contamination they experienced during ascent. Significant complications with the relationships among established chemical trends were elucidated by Castle et al. (2012), and it was concluded that each geochemical trend may have originated on separate but similar parent bodies.

Stannern has an unusually young crystallization age for eucrites of 4.434 b.y., which is consistent with a late-stage initiation caused by an impact event. Another impact event occurred ~3.7 b.y. ago, which reset some isotopic clocks such as Ar–Ar. This event corresponds to the Late Heavy Bombardment period on the Moon ~3.8–4.1 b.y. ago. Both lunar and Vesta chronometer resetting events likely represent the same population of impactors, with impacts on Vesta continuing for a longer time. Stannern has a cosmic-ray exposure age of 35.1 (±0.7) m.y.

The Stannern Trend comprises a small number of eucrites including the falls of Stannern, Bouvante, and Pomozdino, together with the Saharan find NWA 4523 and several Antarctic finds; the newly found eucrite Bluewing 001 also shares close similarities with this trend. The specimen of Stannern shown above is a 2.58 g partial slice with fusion crust along the upper edge.


Thanks to Shawn Alan for sharing the following historical account of Stannern: Encyclopaedia Metropolitana; or, Universal Dictionary of Knowledge, Volume XXV, edited by Rev. Edward Smedley, Rev. Hugh James Rose, and Rev. Henry John Rose (London, 1845)

STONES, METEORIC. by William Hallows Miller (p. 82)

The next event of the kind which we shall describe deserves notice on account of the care with which the circumstances attending it were investigated by von Schreibers and von Widmanstatten on the spot, a week after it occurred. At Stannern, a small town in Moravia about ninety-two miles from Vienna on the post road to Prague, between half-past five and six A.M. on the 22d of May, 1808, the air, which had previously been clear, was suddenly obscured by a thick mist. A very loud explosion was then heard, followed by fainter reports and a noise like that of carriages drawn over a rough pavement. These sounds appeared to proceed from a point moving from north-west to south-east, and lasted about eight minutes. In the mean time a number of stones fell on the ground, scattering themselves over an oval surface about eight English miles and a half long, from north north-west to south south-east, and three miles and a quarter wide, having Stannern for its middle point. They formed three principal groups: one in and about Stannern; another, containing two of the largest stones, two of which weighed sixteen and fourteen pounds respectively, at the north end of the oval; the third, composed of the smallest, at the south end. Hence, as at L’Aigle, the largest stones appear to have fallen first. They were found to be hot a short time after their fall. One of them weighing a little more than four pounds made a hole two feet deep in a newly ploughed field. The number of stones actually gathered amounted to sixty-six, and their joint weight to one hundred and eighteen pounds avoirdupois. After the first explosion the mist became so dense that objects could not be discerned at the distance of twelve paces. It extended thirty-seven miles to the south, and nearly half that distance in other directions, and did not wholly disappear for four hours. About the time the explosion was heard, a fire-ball emitting sparks and leaving a train of fire behind it was seen from Triesch, four miles to the west of Stannern, and also from the Bohemian frontier, twenty miles to the north. The stones have a very uneven surface coated with a pitch-black crust. Their interior resembles a fine-grained porous white sandstone traversed by veins of a greyish substance. They contain small quantities of sulphuret of iron and oxide of iron, but no iron in a metallic state, and do not affect the magnetic needle. Their specific gravity varies from 2.95 to 3.16, which is less than that of most other meteoric stones. According to the analysis of Moser, a portion of one of them contained, in 100 parts, silica 46.25, lime 12.12, alumina 7.62, magnesia 2.50, oxide of iron 27, oxide of manganese 0.75, with traces of chrome, water, sulphur, and neutral hydrochlorates.